Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Holger Fleischer^a* and Dieter Schollmeyer^b

^aInstitut für Anorganische Chemie und Analytische Chemie der Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and ^bInstitut für Organische Chemie der Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany

Correspondence e-mail: fleische@mail.uni-mainz.de

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.006 \text{ Å}$ R factor = 0.051 wR factor = 0.149 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the crystal structure of pyridinium D(+)-10-camphorsulfonate hemihydrate, $C_5H_6N^+ \cdot C_{10}H_{15}O_4S^- \cdot 0.5H_2O$, a water molecule lying on a twofold axis serves as a donor of two hydrogen bonds, thus linking two camphorsulfonate anions. Each anion in its turn acts as a hydrogen-bond acceptor for the NH group of a pyridinium cation.

Pyridinium D(+)-10-camphorsulfonate hemihydrate

Received 18 December 2001 Accepted 21 January 2002 Online 31 January 2002

Comment

A number of ammonium sulfonates co-crystallize with water, resulting in a balancing of the number of hydrogen-bond donor and acceptor sites in the structure (Banerjee *et al.*, 1984; Andrews *et al.*, 1986; Laks *et al.*, 1986; Marchand *et al.*, 1990; Balasubramanian & Muthiah, 1996; Merritt & Duffin, 1970). We obtained pyridinium D(+)-10-camphorsulfonate hemi-hydrate, (I) (Fig. 1), as a by-product in the synthesis of allyl D(+)-10-camphorsulfonate. Crystals of (I) precipitated at 278 K from a solution in tetrahydrofuran (thf). The product was characterized by elemental analysis and its ¹H and ¹³C NMR spectra. Adding an excess of pyridine to a solution of (I) in CDCl₃ led to merged ¹H NMR signals of pyridine and pyridinium, showing a rapid transfer of the H atom between the two, and thus implying dissociation of the pyridinium camphorsulfonate in chloroform solution.

A water molecule involved in two $O-H\cdots O$ bonds symmetrically bridges two camphor-10-sulfonate anions, and one pyridinium ion is linked to each camphorsulfonium moiety *via* an $N-H\cdots O(=S)$ bridge. The S-O bond lengths are within the expected range (Russell *et al.*, 1994), and do not differ significantly from each other, showing that hydrogen bonds from the water molecule and the pyrdinium ion to O2 and O3, respectively, are not very strong. Nevertheless, the rather high melting point of (I) (468–469 K) indicates substantial interaction between the ions.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII (Johnson, 1976) view of the cation, anion and water molecule in the structure of (I). Displacement ellipsoids are shown at the 50% probability level. All H atoms bound to C atoms have been omitted for clarity. The remaining H atoms are drawn as circles of arbitrary radius.

Experimental

D(+)-10-Camphorsulfonyl chloride (10.01 g, 39.92 mmol), allyl alcohol (3.00 g, 51.65 mmol) and pyridine (3.16 g, 39.94 mmol) were dissolved in 200 ml thf and the mixture was heated to reflux for 6 h. The precipitate formed was extracted with toluene and the title compound obtained by cooling the extract to 228 K. It was recrystallized from thf at 278 K.

Crystal data

$C_5H_6N^+ \cdot C_{10}H_{15}O_4S^- \cdot 0.5H_2O$	$D_x = 1.311 \text{ Mg m}^{-3}$
$M_r = 320.40$	Cu $K\alpha$ radiation
Monoclinic, C2	Cell parameters from 25
a = 24.244 (8) Å	reflections
b = 6.8638(3) Å	$\theta = 26-40^{\circ}$
c = 10.415 (3) Å	$\mu = 1.94 \text{ mm}^{-1}$
$\beta = 110.54 \ (1)^{\circ}$	T = 295 (2) K
$V = 1622.9 (7) \text{ Å}^3$	Needle, colourless
Z = 4	$0.45 \times 0.10 \times 0.06 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\theta/2\omega$ scans Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) $T_{\rm min} = 0.90, \ T_{\rm max} = 0.99$ 3574 measured reflections 3092 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.149$ S = 1.033092 reflections 208 parameters H-atom parameters constrained

2748 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$ $\theta_{\rm max} = 73.9^{\circ}$ $h=-30\to 30$ $k=-8\rightarrow 8$ $l = -12 \rightarrow 12$ 3 standard reflections frequency: 60 min intensity decay: 3%

 $w = 1/[\sigma^2(F_o^2) + (0.0968P)^2]$ + 0.7053P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.40 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.32 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983); 1293 Friedel pairs Flack parameter = -0.03 (3)

Table 1

Selected geometric parameters (Å, °).

S1-O1	1.446 (3)	C6-O4	1.192 (5)
S1-O2	1.458 (3)	N12-C13	1.318 (6)
S1-O3	1.448 (3)	N12-C17	1.326 (5)
S1-C10	1.782 (3)		
O1-S1-O3	113.2 (2)	O3-S1-O2	110.98 (18)
O1-S1-O2	112.47 (18)	C13-N12-C17	122.3 (4)
01 01 010 01	1717(2)		
01 - S1 - C10 - C1	174.7 (3)		

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N12-H12\cdots O3$ $O1W-H1W\cdots O2$	0.86	2.00	2.718 (5)	141
	1.01	1.86	2.864 (4)	172

H atoms attached to C atoms were placed in calculated positions; H atoms bound to N and O atoms were located from a difference Fourier synthesis. Positional parameters of all H atoms were refined using a riding motion model. The displacement parameter for the H atom of the water molecule was fixed at 1.5 times the equivalent isotropic displacement parameter of the O atom. The isotropic displacement parameters for other H atoms were refined with all H atoms bonded to the same C atom constrained to have the same displacement parameter.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Andrews, P. R., Cody, V., Iskander, M. N., Jeffrey, A. I., Mackay, M. F., Oliver, P. J. & Sadek, M. (1986). Aust. J. Chem. 39, 1559-1574.
- Balasubramanian, T. P. & Muthiah, P. T. (1996). Acta Cryst. C52, 1017-1019.
- Banerjee, T., Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1984). Acta Cryst. C40, 507-509.
- Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762. [Revised version of CORINC; Wiehl, L. and Schollmeyer, D. (1994). University of Mainz, Germany.]
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. ORNL-5138, revised. Oak Ridge National Laboratory, Tennessee, USA.
- Laks, P. E., Rettig, S. J. & Trotter, J. (1986). Acta Cryst. C42, 1799-1800.
- Marchand, A. P., Annapurna, P., Taylor, R. W., Simmons, D. L., Watson, W. H., Nagl, A., Flippen-Anderson, J. L., Gilardi, R. & George, C. (1990). Tetrahedron, 46, 5077-5084.
- Merritt, L. L. Jr & Duffin, B. (1970). Acta Cryst. B26, 734-744.
- Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941-1952
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.