Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Holger Fleischer ${ }^{\text {a }}$ and Dieter Schollmeyer ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institut für Anorganische Chemie und Analytische Chemie der Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie der Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany

Correspondence e-mail:
fleische@mail.uni-mainz.de

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.149$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Pyridinium D(+)-10-camphorsulfonate hemihydrate

In the crystal structure of pyridinium $\mathrm{D}(+)-10$-camphorsulfonate hemihydrate, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, a water molecule lying on a twofold axis serves as a donor of two hydrogen bonds, thus linking two camphorsulfonate anions. Each anion in its turn acts as a hydrogen-bond acceptor for the NH group of a pyridinium cation.

Comment

A number of ammonium sulfonates co-crystallize with water, resulting in a balancing of the number of hydrogen-bond donor and acceptor sites in the structure (Banerjee et al., 1984; Andrews et al., 1986; Laks et al., 1986; Marchand et al., 1990; Balasubramanian \& Muthiah, 1996; Merritt \& Duffin, 1970). We obtained pyridinium $\mathrm{D}(+)$-10-camphorsulfonate hemihydrate, (I) (Fig. 1), as a by-product in the synthesis of allyl D(+)-10-camphorsulfonate. Crystals of (I) precipitated at 278 K from a solution in tetrahydrofuran (thf). The product was characterized by elemental analysis and its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Adding an excess of pyridine to a solution of (I) in CDCl_{3} led to merged ${ }^{1} \mathrm{H}$ NMR signals of pyridine and pyridinium, showing a rapid transfer of the H atom between the two, and thus implying dissociation of the pyridinium camphorsulfonate in chloroform solution.

A water molecule involved in two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds symmetrically bridges two camphor-10-sulfonate anions, and one pyridinium ion is linked to each camphorsulfonium moiety via an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(=\mathrm{S})$ bridge. The $\mathrm{S}-\mathrm{O}$ bond lengths are within the expected range (Russell et al., 1994), and do not differ significantly from each other, showing that hydrogen bonds from the water molecule and the pyrdinium ion to O 2 and O3, respectively, are not very strong. Nevertheless, the rather high melting point of (I) (468-469 K) indicates substantial interaction between the ions.

Figure 1
ORTEPII (Johnson, 1976) view of the cation, anion and water molecule in the structure of (I). Displacement ellipsoids are shown at the 50% probability level. All H atoms bound to C atoms have been omitted for clarity. The remaining H atoms are drawn as circles of arbitrary radius.

Experimental

$\mathrm{D}(+)$-10-Camphorsulfonyl chloride $(10.01 \mathrm{~g}, \quad 39.92 \mathrm{mmol})$, allyl alcohol $(3.00 \mathrm{~g}, 51.65 \mathrm{mmol})$ and pyridine $(3.16 \mathrm{~g}, 39.94 \mathrm{mmol})$ were dissolved in 200 ml thf and the mixture was heated to reflux for 6 h . The precipitate formed was extracted with toluene and the title compound obtained by cooling the extract to 228 K . It was recrystallized from thf at 278 K .

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=320.40$
Monoclinic, C2
$a=24.244$ (8) £
$b=6.8638$ (3) \AA
$c=10.415$ (3) \AA
$\beta=110.54(1)^{\circ}$
$V=1622.9(7) \AA^{3}$
$Z=4$
$D_{x}=1.311 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=26-40^{\circ}$
$\mu=1.94 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Needle, colourless
$0.45 \times 0.10 \times 0.06 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \omega$ scans
Absorption correction: ψ scan
(CORINC; Dräger \& Gattow, 1971)
$T_{\text {min }}=0.90, T_{\text {max }}=0.99$
3574 measured reflections
3092 independent reflections

$$
2748 \text { reflections with } I>2 \sigma(I)
$$

$R_{\text {int }}=0.023$
$\theta_{\text {max }}=73.9^{\circ}$
$h=-30 \rightarrow 30$
$k=-8 \rightarrow 8$
$l=-12 \rightarrow 12$
3 standard reflections frequency: 60 min intensity decay: 3%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.149$
$S=1.03$
3092 reflections
208 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{O} 1$	$1.446(3)$	$\mathrm{C} 6-\mathrm{O} 4$	$1.192(5)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.458(3)$	$\mathrm{N} 12-\mathrm{C} 13$	$1.318(6)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.448(3)$	$\mathrm{N} 12-\mathrm{C} 17$	$1.326(5)$
$\mathrm{S} 1-\mathrm{C} 10$	$1.782(3)$		
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	$113.2(2)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	$110.98(18)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$112.47(18)$	$\mathrm{C} 13-\mathrm{N} 12-\mathrm{C} 17$	$122.3(4)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 1$	$174.7(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N12-H12 \cdots O3	0.86	2.00	$2.718(5)$	141
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O} 2$	1.01	1.86	$2.864(4)$	172

H atoms attached to C atoms were placed in calculated positions; H atoms bound to N and O atoms were located from a difference Fourier synthesis. Positional parameters of all H atoms were refined using a riding motion model. The displacement parameter for the H atom of the water molecule was fixed at 1.5 times the equivalent isotropic displacement parameter of the O atom. The isotropic displacement parameters for other H atoms were refined with all H atoms bonded to the same C atom constrained to have the same displacement parameter.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger \& Gattow, 1971); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Andrews, P. R., Cody, V., Iskander, M. N., Jeffrey, A. I., Mackay, M. F., Oliver, P. J. \& Sadek, M. (1986). Aust. J. Chem. 39, 1559-1574.

Balasubramanian, T. P. \& Muthiah, P. T. (1996). Acta Cryst. C52, 1017-1019.
Banerjee, T., Basak, A. K., Mazumdar, S. K. \& Chaudhuri, S. (1984). Acta Cryst. C40, 507-509.
Dräger, M. \& Gattow, G. (1971). Acta Chem. Scand. 25, 761-762. [Revised version of CORINC; Wiehl, L. and Schollmeyer, D. (1994). University of Mainz, Germany.]
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. ORNL-5138, revised. Oak Ridge National Laboratory, Tennessee, USA.
Laks, P. E., Rettig, S. J. \& Trotter, J. (1986). Acta Cryst. C42, 1799-1800.
Marchand, A. P., Annapurna, P., Taylor, R. W., Simmons, D. L., Watson, W. H., Nagl, A., Flippen-Anderson, J. L., Gilardi, R. \& George, C. (1990). Tetrahedron, 46, 5077-5084.
Merritt, L. L. Jr \& Duffin, B. (1970). Acta Cryst. B26, 734-744.
Russell, V. A., Etter, M. C. \& Ward, M. D. (1994). J. Am. Chem. Soc. 116, 19411952.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

